Understanding Stacks in Programming
January 09, 2025 | Data Structures
Stacks are one of the fundamental data structures in computer science. They operate on a Last In, First Out (LIFO) principle, meaning the last element added to the stack is the first one to be removed.
How Stacks Work
A stack has two primary operations:
- Push: Add an element to the top of the stack.
- Pop: Remove the top element from the stack.
Additional operations often include:
- Peek/Top: View the top element without removing it.
- isEmpty: Check if the stack is empty.
- Size: Get the number of elements in the stack.
Real-World Analogies
Stacks can be visualized with a stack of plates:
- The last plate placed on top is the first one to be removed.
- You can only interact with the top plate.
Use Cases of Stacks
- Expression Evaluation: Used in parsing and evaluating mathematical expressions.
- Undo/Redo Functionality: Many applications use stacks to track actions for undo/redo functionality.
- Backtracking: For example, navigating through browser history.
- DFS Algorithms: Depth-first search in graph traversal.
Implementing a Stack in JavaScript
Here is a simple implementation of a stack using a class:
class Stack {
constructor() {
this.items = [];
}
// Add an element to the stack
push(element) {
this.items.push(element);
}
// Remove and return the top element
pop() {
if (this.isEmpty()) {
throw new Error("Stack is empty");
}
return this.items.pop();
}
// View the top element
peek() {
if (this.isEmpty()) {
throw new Error("Stack is empty");
}
return this.items[this.items.length - 1];
}
// Check if the stack is empty
isEmpty() {
return this.items.length === 0;
}
// Get the size of the stack
size() {
return this.items.length;
}
// Clear the stack
clear() {
this.items = [];
}
}
// Example Usage
const stack = new Stack();
stack.push(10);
stack.push(20);
console.log(stack.peek()); // Output: 20
console.log(stack.pop()); // Output: 20
console.log(stack.isEmpty()); // Output: false
Built-In JavaScript Alternatives
JavaScript arrays can also function as stacks since they provide push
and pop
methods:
const stack = [];
stack.push(10);
stack.push(20);
console.log(stack[stack.length - 1]); // Peek: Output 20
console.log(stack.pop()); // Pop: Output 20
console.log(stack.length === 0); // isEmpty: Output false
Time Complexity
- Push: O(1)
- Pop: O(1)
- Peek: O(1)
Visualizing Stack Operations
Initial Stack: []
Push(5): [5]
Push(10): [5, 10]
Peek(): [5, 10] (Top: 10)
Pop(): [5] (Removed: 10)
IsEmpty(): false
Advanced Stack Applications
- Balanced Parentheses:
function isBalanced(expression) {
const stack = [];
const pairs = { ')': '(', '}': '{', ']': '[' };
for (const char of expression) {
if (['(', '{', '['].includes(char)) {
stack.push(char);
} else if ([')', '}', ']'].includes(char)) {
if (stack.pop() !== pairs[char]) {
return false;
}
}
}
return stack.length === 0;
}
console.log(isBalanced("{[()]}")); // Output: true
console.log(isBalanced("{[(])}")); // Output: false
- Depth-First Search:
function dfs(graph, start) {
const stack = [start];
const visited = new Set();
while (stack.length > 0) {
const node = stack.pop();
if (!visited.has(node)) {
visited.add(node);
console.log(node);
for (const neighbor of graph[node]) {
stack.push(neighbor);
}
}
}
}
const graph = {
A: ['B', 'C'],
B: ['D', 'E'],
C: ['F'],
D: [],
E: ['F'],
F: []
};
dfs(graph, 'A');
// Output: A, C, F, B, E, D (order may vary)